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ABSTRACT 

Addition of the direct  and indirect planetary perturbations to the 
author's 1963 modification of Hansen's theory is proposed. The method 
described can determine the Saturnian effects upon the motion of the 
outer Jovian satellites. The expansion of the disturbing function and of 
its derivatives is reduced to a form convenient for  programming. 



BASIC NOTATIONS 

r '  - the jovicentric position vector of the sun 

- 
r '  - the jovicentric position vector of the fictitious sun moving in Hansen's mean 

ellipse 

Y' - Hansen's perturbations of the solar radius vector 

u' - the elevation of the sun relative to the plane of the Hansen mean ellipse 

P '  , Q'  , R' - Gibbsian vectors of the solar mean ellipse 

a,,' , e,', n,,' - the semimajor axis, eccentricity, and mean daily motion associated with 
the solar  mean ellipse 

g'  = no( t f go' 

n,,' 8 2 '  

- the undisturbed mean anomaly of the sun 

- Hansen's perturbations of the mean anomaly of the sun 

41 = R '  + n o  ' SZ' - Hansen's disturbed mean anomaly of the sun 

T '  - Hansen's disturbed true anomaly of the sun 

The similar notations 

- 
r " ,  r " ,  V "  , u" , P" , Q" , R" , 

a0", e,", no",  g " = " o" t t go" , 

no" 6 z " ,  .e " g" i no" X z " , f " 
- 

refer  to the heliocentric motion of Saturn; and the notations 

refer  to the jovicentric motion of the satellite 

w - the mean argument of the perigee of the satellite 

-w' - the mean longitude of the ascending node of the satellite. The plane of the solar 
mean ellipse is taken as the basic reference plane. 

I, - the mean inclination of the orbital plane of the satellite 
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A = [ A i j  ] - the matrix which is a polynomial in Euler parameters A 1, A 2 ,  A, ,  A, and which 
carries all the periodic oscillations of the osculating orbit plane of the satellite 
around its mean position 

D - the jovicentric position vector of Saturn 

A ' ,  B' , C'  - the projections of r '  

A " ,  B", C" 

A,  B, C 

on P, Q ,  and R respectively 

- the projections of r "  

- the projections of D 
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PLANETARY EFFECTS IN THE MOTION 
OF NATURAL SATELLITES 

by 
Pe ter  Musen 

Goddavd Space Flight Centev 

INTRODUCTION 

In this art icle we develop the theory of general planetary perturbations in the motions of the 
"natural" planetary satellites-one which can be applied, for  example, to the outer Jovian satel- 
l i tes  to determine the effects of Saturn. This topic represents a particular case of the four-body 
problem. 

For the determination of the purely solar effects in the motion of the outer Jovian satellites, 
the author has suggested a modified form of Hansen's theory (Musen, 1963). In the motion of these 
satellites, the solar effects a r e  strongly dominant over the effects of Saturn o r  any other additional 
small force. Thus the determination of the direct  solar effects, under the assumption that the 
solar motion is Keplerian, constitutes the "main problem" of the theory of satellite motions. 

A modified form of Hansen's theory as suggested by the author was programmed by Charnow 
(1966), and as a tes t  the actual expansion of the solar perturbations and the ephemerides for 1967 
and 1968 were computed for Jupiter X. The satellite was found by E. Roemer in close proximity to 
the predicted position. The representation, by this theory, of 30 years  (1968) of Jupiter X observa- 
tions suggests that i t  may be necessary to include Saturnian effects i n  the theory of motion. 

We must expect the t e rms  affected by small  divisors in the integration process to be among 
the most significant te rms  in the expansion of the planetary perturbations. Such terms,  in the 
past, were discovered through attempts to find cri t ical  linear combinations of the mean anomalies 
of all three bodies (i.e., combinations with very small  mean motions). Obviously, such an approach 
requires luck, and reasonable doubts can be raised that all  the significant planetary effects can 
be found in this way. We prefer to u s e  a form of the theory and a computational scheme which 
permit the computer to select the significant te rms  automatically and to decide their  importance 
on the basis of a purely numerical criterion. 

Two types of planetary effects are to be included in the theory: (1) the direct  planetary 
effects caused by the direct  perturbative action of Saturn on the satellite, and (2) the indirect ef- 
fects caused by the deviation of the solar motion from its Keplerian approximation. The indirect 
effects must be included in the solar par t  of the disturbing function. Thus they represent an im- 
mediate contribution to the main problem. In order  to include the direct  planetary effects in the 
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theory presented here, necessary changes are made in the formulation of the main problem. The 
basic "small parameter' '  in front of the solar par t  of the disturbing function is la rger  than that for  
the planetary part. This means that the influence of the mutual perturbations of Jupiter and Saturn 
is greater  in the indirect than in the direct  planetary perturbations of the satellite. Under the in- 
fluence of the planetary effects, the mean argument of the perigee and the mean longitude of the 
ascending node of the satellite will cease to be l inear functions of time. They will also contain 
t e rms  that are quadratic in time; and, theoretically, also te rms  of higher orders.  Thus, under the 
influence of the planetary effects, the motion of these two angles will be slightly accelerated. 

The form of the theory we are pursuing here is numerical. The values of the mean elements 
of all bodies can be substituted from the outset, and the final output will be trigonometric expan- 
sions with purely numerical coefficients. We employ ideas expressed by the author in his ear l ier  
work on the lunar perturbations of artificial satellites (Musen, 1961) and expand the disturbing 
functions into a series of polynomials in A, B, C, where A is the projection of D, the jovicentric 
position vector of Saturn, on the mean line of apsides of the Jovian satellite; B is the projection of 
D on the direction normal to the mean line of apsides in the orbital plane; and C is the projection 
of D on the line normal to the satellite's orbital plane. These polynomials are very simple and 
their trigonometric expansions can be obtained fair ly  easily with a computer. 

The disturbing function for the direct  planetary effects contains the odd negative powers of 1 D I . 
Following Newcomb's idea in his work (Newcomb, 1907) on the planetary inequalities in the motion of 
the moon, we abandon the application of Laplace coefficients to obtain the trigonometric expansions 
of the powers of I D 1 , and suggest instead the use of harmonic analysis. Of course, the Keplerian 
elliptic approximations to the jovicentric motion of the sun and to the heliocentric motion of Saturn 
will produce the most significant par t  in the expression for  the direct  planetary effects. However, 
we shall provide a device to car ry  the process  to higher approximations, either in order to include 
them, i f  necessary, o r  to have a more precise idea of the magnitudes of the te rms  we omit. In this 
work, in accordance with Hansen, we use the satellite's osculating orbit plane as the basic reference 
plane for the expansion of the perturbations in the satellite's radius vector and mean anomaly. In 
the ciassical Hansen theory, the motion of the satellite's osculating orbital plane is referred to the 
osculating solar orbital plane. However, the elevations of the sun and of Saturn relative to their 
mean orbital planes are very small, so that for our purposes we can refer  the motions of the 
osculating orbital planes of the sun to the mean orbital plane. Also in this work we can use the 
existing Hill's expansions (Hill, 1890, 1906) of the Hansen coordinates of Jupiter and Saturn. 

T H E  DIRECT PLANETARY EFFECTS IN THE ORBITAL P L A N E  OF THE SATELLITE 

We take the mean orbital plane of the sun relative to Jupiter as the basic reference plane. The 
x - a x i s  is directed toward the perijove of Hansen's mean ellipse of the sun, and the z-axis is nor- 
mal to this plane. We use the following notations: 

r ' - the jovicentric position vector of the sun, 

r '  - - 
the jovicentric position vector of the fictitious auxiliary sun moving in 
Hansen's mean ellipse, 
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V' - Hansen's perturbations of the solar  rad ius  vector, 

U '  - the elevation of the sun relative to the plane of the Hansen mean ellipse, 

P '  , Q '  , R' - Gibbsian vectors of the solar mean ellipse, 

ao' , eo' , no' - the semimajor axis, eccentricity, and mean daily motion associated 
with the solar mean ellipse, 

g '  = no' t + g,' - the undisturbed mean anomaly of the fictitious sun, 

n,' Sz '  - Hansen's perturbations of the mean anomaly of the sun, 

4'  1 g '  t n O  ' Sz '  - Hansen's disturbed mean anomaly of the sun, 

- 
f - Hansen's disturbed t rue anomaly of the sun. 

The notations 

- 
I ,  , I  ,, r "  , r" , U'' , u "  , P " ,  Q " ,  R " ,  a. , eo  , no 

refer  to the heliocentric motion of Saturn; and the notations 

refer  to the jovicentric motion of the satellite. The basic relations between the two types of posi- 
tion vectors (for example, r" and F") are:  

(4) 
- - 
r = P '  r '  c o s f '  t Q' f' s i n f '  , 

3 



The expansions of P, Q ,  R into periodic series can be obtained from the relation 

(7) [P,  Q ,  Rl = A, (-0‘) A . A, ( + w )  

given by the author in his  previous work (Musen, 1963), where A, ( a )  is the matrix of rotation 
around the z-axis; the A-matrix is a polynomial in the Euler parameters A,, A ,, A,, X 4  which car ry  
all the periodic oscillations of the osculating orbit plane around its mean position; and W ,  -w‘  a r e  
the mean argument of the perijove and the mean longitude of the ascending node respectively. 

We obtain from Equation 7: 

(9) pY = t (A,‘-A:) s i n ( f L . - L ) ‘ )  + 2 A 3 A 4 c o s ( c c . - ~ ’ ) -  ( A ~ - h ~ ) s i n ( w - i w ’ ) - 2 A l h z c o s ( ~ + w ’ ) ,  

Pz + 2 ( A 2  A, + A, A , )  c o s w  + 2 ( A ,  A, - A, A 3 )  s i no i  , (10) 

- 
t (;.: - ::) cos  (,, - ’ ) - 24 \ s i n  (’. - o ) - (A: - A,’ cos (G 

QY 3 4  ) 

Q, = t 2(A, h4 -A, A 3 )  c o s w  - 2(Al A, + A, h 4 )  s i n w  , 

R~ = + 2 ( ~ ,  A, -A, h,) C O S L I ’  - 2 ( ~ ,  A, + A, A,) sine,' , 

- 2(4., k 4  + ‘i A ) - 2(1 ,  \3 - :,A,) s i n j i ‘  , 
RY - 2 3  

RZ = -A,, - A 2  + A 2  + A , .  
4 

We can set 

A, = S k ,  , 

A, 6 A 3  , 
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where I, is the mean inclination of the satellite’s orbital plane and S A , ,  6 A  *, SA,, S A ,  a r e  of the 
order  of perturbations. Making use of Equations 17 through 20, we can wr i te  Equations 8 through 
16 with sufficient accuracy in the form 

R = R, + S + x  R, , (23) 

where 

Q ,  = 

and 

s i n  I, cos w 

are the main long-period par ts  in P, Q ,  and R ,  and 



Designating by D the jovicentric position vector of Saturn, we have 

D = r”  t r ‘  ; 

or,  taking Equations 1 and 3 into account, 

(29) D = ( l + u ” ) ( F ” + R ” u ” )  + ( l + u ’ ) ( F ’ t R ’ u ’ )  . 

In order  to achieve symmetry of formulas and computational procedures, we decompose r ” ,  r ’ ,  and 
D along P ,  Q, and R : 

r ’  = A ‘ P t B ’ Q t C ’ R ,  (31) 

(33) A = A” t A ’  , B = B” t B’ , C C” + C’ . 

The disturbing function 0” associated with the direct  Saturnian action, when expanded into a ser ies  
in Legendre polynomials, can be written in the form 

(34) 

where m“ is the ratio of the mass of Saturn to the mass of Jupiter. 
and substituting 5 and 6 in the last equation, we obtain 

Making use of Equations 32, 
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5 (a0")7 A ( A ~  -3BZ) (;)3 cos 3f 
'S 'D a0"3 

where now m" designates the ratio of the mass of Saturn to the mass of the sun. 

A similar form of the expansion of the disturbing function was used by the author (Musen, 1961) 
in the theory of the lunar effects in the motions of artificial satellites. The application of harmonic 
analysis in g' and g" would be the easiest  way to expand D - 3 ,  D - 5 ,  D-7 , - - into trigonometric series.  
In order  to make this  harmonic analysis possible, we must expand a. n'' in powers of u ' ,  v", u', u"  

and 6+. 

Setting 

we have 

where Do and also S+ and 6D a r e  referred to the frame ( P o  , Q ,  , R , )  . From now on there is no need 
for the subscripts on Po , Q ,  , R,, and D o .  W e  omit them and use simply P , Q , R ,  and D .  The notations 
A" , A ' , A . . . will be associated with this new meaning of P, Q , R. 
meaning of 

We shall also change the 

- - 
- r '  cos  -, r "  cos  ~ , ,  
a O " s i n  s i n  f 

- 

and define them as the coordinates associated with the undisturbed Keplerian motions, depending 
upon g" and g' respectively. Thus 

- - 
r " r '  
- c o s f "  = c o s E "  - e; , - cosf' = c o s E '  - e,,' , 
a," a '  
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E" - eo" s i n  E" = g" , E' - eo' s i n E '  = g' . 

Now, omitting the factor 1 i u and assigning the new meaning to A, B, C and D = r" t G' , we se t  

3 a,,"5 A2 - B2 - - ao"5 AB 

D5 0 D5 ao" 
$ - -  . ~ -  

a , , 2  (:)* c o s 2 f t  -- . - 

aO" A(A2 - 3 B 2 )  - 

D7 aO" 3 
+ - - . -  (e) cos 37 

Designating the old value of a. R "  by a, R:, we have 

a. no" = a. 0" t K a. 0" 

where 

D D a d ' J ,  
J g" + 6$x -) a0 . (v0:,, 0 + - a0 

* - -) 
(41) D JD 

t no" 8 ~ ' '  - - a  a 
K = v r - z t n ' 8 z ' -  

J r  d g '  

and 

J 
tR-. 

J a 
= P -  v 

D/a; JA/a; tQaB/ao a d a ;  
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Taking Equations 28 and 37 into account and neglecting the very small quantities u ' ~ ,  u"', u '  u " ,  

u '  v t  , U "  v", we have 

- 
r l l  a," 

D/a; a; aD/a," 
+ - . -  '-) 

a,' ; I  a," 

D/.,.. a; ao' JD/ao 

u " 
Q + 

We introduce the following auxiliary notations: 

I 
a; = R" . P = [ R ; ' c o s ( w - w ' ) + R ' ' s i n ( w - w ' ) ] c o s 2  

I 
t [RC c o s ( w + w ' ) - ~ ;  s i n ( w t w ' ) ~  s in2  2 f Rz" s i n 1 ,  s i n o  , (46) 
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bl" = * Q 

b," = Q" * Q 

b3" R" . Q 

I O  [ p 1, cos ( w  - w '  - P: s i n  ( w  - w' >] cos2 

c " = P" . R = - ( P," cosw '  + PX" s i n w ' )  s i n  I, + Pz" cos  I, , 

b,' = R '  . Q = s i n I ,  C O S L  , 

cl' = p'  . R = Rx = - s i n  I, s i n u '  , 

c ' = Q '  R = RY = - s i n  I, cosw '  , 
2 

10 



cg( = R '  * R  cos Io  . (61) 

It is of interest  to note that these auxiliary quantities a r e  affected by the long-period perturbations 
only. We have, also, 

- - I, - - I, 

cos f "  + a2" 4 s i n f "  , 
A" - 

a O  a O  a O  
a; 4 

b," &, 

c ;  4 

- _  

- - I, - ,I 

C O S T "  + b," 4 s i n f "  , 
B" - - -  

a O  a O  a O  

- 
r " - - I ,  

c o s  7 "  + c," - s i n  f "  , 
C" 

a0 a O  a O  

- -  

, f '  
c o s f '  + a 2  7 s i n T '  

" 0  

C" C C '  
- - .  B .  c -  .- _ .  - 

B" t B'  A "  + A '  
I,  3 

A -  
/ I  ' 

- 

" 0  " 0  " 0  " 0  a O  a O  

After we have obtained the expansions in Equations 62 through 67 we deduce the expansion 

- i, - I ,  - 
r" R ' . -  - - Pz" & cos 7" + Q," 4 s i n  T" , 

a( a0 a O  



All the expansions in Equations 5 3  through 71 a r e  purely periodic, and depend upon the basic 
arguments g', g " ,  (L', and w ' .  

The scalar  expression of the operator K to be used in the actual computations takes the form 

B'  a a,,' T I  
t-- 

A '  a 
ad' dA,'ad' a: dB/a,," ad' ao( a. 

U" a a . ao' r '  a0  d 
t - R "  ' - 

a O  

- ~ ' aD/a," b," ~ aR/a0' a. 

The expansions of e+ 1, C C ~ ,  t+ to be substituted into Equation 72 can be obtained from Equation 27: 

(27") 

(27"') 

Not all the perturbations in the expansion of K (Equation 72) a r e  comparable in size. For each 
satellite we shall make a special decision about their relative importance, and in each particular 
case the expansion of the operator K and the result of its application to a. 0'' will always be 
reduced to only a few terms. 
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We obtained the differential equations governing the variations of Hansen's elements 11 0/11, 

h e c o s ( ~ - . r r o - n o y t ) - e o  
-r = 2 F  

0 1-e:  

by combining ideas f rom Hansen's planetary (1857-59) and lunar (1862) theories (Musen, 1963). We 
have, in the general case, 

d aon d a. i1 11 eo 
+ N 2 r  7 , dY 

d t  
- 

i, R o \ l  d a. i i  

M, -7 + N , r  ;r , d 110 

d t  h , I  

_ _  

where M I ,  N, ( i  = 1, 2, 3) are defined by the equations: 

r 1 

(74) 

(75)  

c o s 7  , (79) 1 r s i n f  d F 

"0 7 2  + - -  
M 3  - 1-e:  a: ' 
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Now, however, in order  to separate the main par t  of the direct  planetary effects from a less  sig- 
nificant part, it will be convenient to change the meaning of some symbols again. So far the nota- 
tions F and T have meant the coordinates which a r e  functions of the disturbed mean anomaly 4.  
Now we shall designate by the same symbols the coordinates which will be functions of the undis- 
turbed mean anomaly g .  Thus 

r - 
- 
7 C O S  f = cosE - e o  , 

0 

and E - e o  s i n  E = g .  This change in notations requires the expansion of the right sides of Equa- 
tions 76 through 81 in powers of n o  62. 

We now se t  

- 

_f_ s i n 7  , 
2n0 

N, = 
(1 -e,,7-)’” a. 
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and, as before, 

- 
"0 r - 

N, = - e o  a s i n  f , (I - e,),'* 0 

with the new meaning of 7 and T. Setting 

a a o Q "  a a. Q" 
+ N i r  - ( i  = 1, 2,  3 )  T i  = M i  - 

d g  a7 ' 

and taking into consideration that the operators a / a g ,  7 ( a l a r )  a r e  commutative with the operator 
K ,  we obtain the following differential equations for the contributions to Hansen's elements under 
the influence of the direct  planetary effects: 

where the operator r is defined as 

and I is the identity operator. The values of n o  62, v, and &$I taken from the solution of the main 
problem can be used in the computation of Equations 93  through 96. 

Our approach here  differs from the approach to the main problem, in which we preferred the 
method of iteration to obtain the solution. In the main problem it is difficult to split the perturba- 
tions into different orders  if the satellite theory is a purely numerical one. Generally speaking, 
the second iteration cycle only starts to produce the meaningful approximations to the amplitudes 
and the mean motions of the arguments of the periodic te rms  in the expansions of the coordinates. 
The uniformity of programming is an additional important factor which favors the use of the itera- 
tion process in the main problem. In the theory of the direct  planetary effects the situation is dif- 
ferent, because (m"/l + m") (.:/no) , the basic small  parameter, is much smaller  than the correspond- 
ing small  parameter of the main problem. 

15 
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The most significant par t  of the direct  planetary effects is associated with the elliptic approx- 
imations to the motion of the sun and of Saturn. The te rms  which a r e  liizear with respect to per-  
turbations in the right sides of Equations 93 through 96 are the only te rms  which might produce 
some small but noticeable additional effects if  the computation is performed with an accuracy of 

purely secular par t  in Equation 94 must be transferred to the corresponding equation in the main 
problem in order  to determine the mean motion I n  y d t  of the pericenter relative to the ideal 
system of coordinates. 

to In practice the operator r, like K, will always be reduced to only a few terms. The 

THE DIRECT PLANETARY PERTURBATIONS OF THE POSITION 
OF THE ORBITAL PLANE OF THE SATELLITE 

Previously (Musen, 1959) we have established the following equations governing the oscilla- 
tions of the orbital plane around its mean position: 

where ~ f :  ~z designates the component of the disturbing function normal to the orbital plane. In 
our present case, 

or, in the expanded form, 

At this point it is convenient to change the meaning of notations in the same manner as we did in 
the previous section. After this change we can se t  

r . D A ( 7 c o s f )  + B(F s i n  f )  

16 



and from Equation 102 we deduce with the new meaning of the notations, 

- - BCr 
= + . - -  3"' (::)' (%)' ( A .  , , 2  r cos f t - - s i n  T 

1 +m" a. O a:2 a~ 

a (a; n") 
. .- 

d Z  

2 

We se t  

Then Equations 97 through 100 for the contributions to A ,  ( i  = 1, 2, 3, 4) as caused by the direct  
planetary effects, after some easy transformations, take the form 

The purely secular te rms  should be transferred from Equations 107 and 108 to the corre- 
sponding equations of the main problem for the purpose of determination of the mean motion of 
the node and of the perigee. Normally the force component normal to the orbital plane is smaller 
than the components in the orbital plane. Thus the te rms  in the right sides of Equations 103 
through 109 which contain the perturbations as factors will be very small  and in most cases  can 
be omitted. 
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REQUIRED MODIFICATIONS IN THE MAIN PROBLEM 

In this section we discuss the changes in the main problem which a r e  necessary to account for  
the deviation of the solar motion from the elliptic Keplerian motion. The expansions of the dis- 
turbing function and of its derivatives as given in the author's previous work (Musen, 1963) require 
some modifications. The factor 1 + I/' must now be attached to T', and F', 7'  must now be con- 
sidered as functions of the disturbed mean anomaly 4 ' .  Furthermore, to make the arguments 
linear with respect to time from the outset, we must expand the disturbing function and its deriva- 
tives in powers not only of no 6 z  as before, but also in powers of no' 6~'. To perform this ex- 
pansion we must distinguish between the two uses of the symbols g and g'; that is, between their 
use as arguments in the expansion of the perturbations and their use as the "elliptic" g and g' 

(constituting the main par t s  of 8 and 4' respectively). The expansion in powers of no 6 z ,  n i  Sz '  

requires formation of the derivatives with respect to the elliptic g and g' only. 

We resort  to the standard Hansen device by introducing the temporary notations 7, y' for g 

and g'  respectively. After the expansion in powers of no 6z and no' S z '  has been completed, we 
remove this distinction and return to the notations g and g'  . We generalize here  the author's 
previous expansion (Musen, 1963) by introducing the disturbing function R* of the same external 
form as in the previous work but with g , 7 and g'  , 1 ' separated. We have 

where 

1 m' 
a. (I,* 

3 

The symbols s* , p*, q* a r e  defined by 

18 
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where 

h -  l t u  p a; 

1 t u '  a0 p' 

1 + u p ao' 
2 ) '  1 + 7J' a0 p'  

s C O S ( @ + @ ' t U + U ' ,  , 1 

s * -  s i n  ( # + @ '  +w+w' 

l + V  
s3* = - - - ao c o s ( @ - @ '  tu-,') , 

l + u '  a0 p '  

* -  1 f u p ao' 

1 + u '  a0 p '  
s - s i n ( @ - @ '  t d - u ' )  , 4 

in which ,o, $, P' , a' are defined by the standard formulas 

/ >  

0 '  
c o s t  - e - C O S $  - 

a0 

t - eo s i n e  = 7 , 

E '  - eo' s i n e '  = y '  . 

The expansions of 

p cos  P - - 
a0 

a. s i n  0 7 

and of 

- ao' cos - aO1 

P' 
s i n @ '  
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in te rms  of y and y' respectively, can be obtained either by using Bessel functions or by means of 
the numerical harmonic analysis. After these expansions have been obtained, we can easily deduce 
the expansions of Equations 111 through 120 in t e rms  of the arguments g, g' , g" , W ,  W' . 

We now se t  

a a. R 
a o R  = ~ ' a , , n ;  , p a p  = ( n + l ) T ' a , R :  , 

n 

where 

is the Taylor operator, and the "bar-operator" designates the replacement of y' by g'  . This 
modified value of the disturbing function must be used in association with the formulas and the 
differential equations developed for  the main problem instead of its previous value as given in the 
ear l ier  work (Musen, 1963). The form of the differential equations and of the integration procedure 
undergoes no change. However, the form of the solution will differ from the solution to the main 
problem. The ser ies  representing the coordinates will no longer be purely periodic. The inclusion 
of the perturbations of the sun and of Saturn will introduce very small mixed te rms  into the expan- 
sion of the coordinates. The mean motions of the node and of the perijove become the power ser ies  
(in practice, polynomials) with respect to time. Consequently, Hansen's long-period arguments will 
become 

= : z 0  + [ n o  ( y + a - T :  ) d t  , 

CONCLUSION 

We have proposed here  the theory and computational scheme which permit addition of the direct  
and the indirect planetary perturbations, with a high degree of accuracy, to the author's modifica- 
tion in 1963 of Hansen's theory. We suggest application of the method presented here to the deter- 
mination of the Saturnian effects in the motion of the outer Jovian satellites. No precise statement 
can be made in advance concerning the selection of terms.  Each Jovian satellite displays its own 
peculiarities of motion, so the final selection of the significant periodic te rms  must be left to the 
electronic computer. The expansion of the disturbing function and of its derivatives, also the 
differential equations of the problem, a r e  reduced to a form convenient for  programming. 
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